
Our case is unusual in that the genes originate
from a fungus and have a known ecological role
in the recipient. In view of the widespread depen-
dence of animals on carotenoids, it is perhaps
curious that acquisition of genes underlying carot-
enoid biosynthesis has not been more frequent.
Whereas the phylogenies for these genes suggest
several events of horizontal gene transfer among
divergent bacterial lineages (Fig. 2), the trees sup-
port only a single acquisition by plants (from their
plastid symbionts) and a single origin within
Fungi (Fig. 2). Likewise, the transfer documented
here, from a fungus to an aphid ancestor, is, so
far, the only acquisition of carotenoid biosynthetic
machinery known in animals.
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D-Amino Acids Trigger
Biofilm Disassembly
Ilana Kolodkin-Gal,1 Diego Romero,2 Shugeng Cao,3 Jon Clardy,3
Roberto Kolter,2 Richard Losick1*

Bacteria form communities known as biofilms, which disassemble over time. In our studies outlined
here, we found that, before biofilm disassembly, Bacillus subtilis produced a factor that prevented
biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of
D-leucine, D-methionine, D-tyrosine, and D-tryptophan that could act at nanomolar concentrations.
D-Amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together.
Mutants able to form biofilms in the presence of D-Amino acids contained alterations in a protein
(YqxM) required for the formation and anchoring of the fibers to the cell. D-Amino acids also prevented
biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. D-amino acids are produced
by many bacteria and, thus, may be a widespread signal for biofilm disassembly.

Mostbacteria formmulticellular commu-
nities known as biofilms in which cells
are protected from environmental insults

(1, 2). However, as biofilms age, nutrients become
limiting, waste products accumulate, and it is ad-
vantageous for the biofilm-associated bacteria to
return to a planktonic existence (2). Thus, biofilms

have a finite lifetime, characterized by eventual
disassembly. Bacillus subtilis forms communities
on semi-solid surfaces and thick pellicles at the
air/liquid interface of standing cultures (1, 3–5).
Cells in the biofilms are held together by an extra-
cellular matrix consisting of exopolysaccharide and
amyloid fibers composed of the protein TasA (5–7).
The exopolysaccharide is produced by the epsA-O
operon, and the TasA protein is encoded by the
yqxM-sipW-tasA operon (8). After 3 days of in-
cubation in a biofilm-inducingmedium, B. subtilis
formed thick pellicles at the air/liquid interface of
standing cultures (Fig. 1A). Upon incubation for
an additional 3 to 5 days, however, the pellicles lost
their integrity (Fig. 1B). To investigate whether

mature biofilms produce a factor that triggers bio-
film disassembly, we asked whether a conditioned
medium would prevent pellicle formation when
added to a fresh medium (9). Medium from an 8-
day-old culture was applied to a C18 column (Sep
Pak,Waters,Milford,MA), and concentrated eluate
from the column was added to a freshly inoculated
culture. The eluate was sufficient to prevent pellicle
formation (Fig. 1C). Concentrated eluate from a 3-
day-old culture had little effect on pellicle forma-
tion (Fig. 1D). Further purification of the factor
was achieved by eluting the cartridge stepwise
with methanol. Elution with 40% methanol re-
sulted in a fraction that was active in inhibiting
pellicle formation (Fig. 1E), but had little effect on
cell growth (fig. S1). The activity was resistant to
heating at 100°C for 2 hours and proteinase K
treatment (Fig. 1F).

Bacteria produce D-amino acids in station-
ary phase (10). We asked whether the biofilm-
inhibiting factor was composed of one or more
D-amino acids. Indeed, D-tyrosine, D-leucine,
D-tryptophan, and D-methionine were active in
inhibiting biofilm formation in a liquid medium,
as well as on a solid medium (Fig. 1, G and H,
and figs. S2 and S3). In contrast, the correspond-
ing L-isomers and D-isomers of other amino acids
(such as D-alanine and D-phenylalanine) were
inert in our biofilm-inhibition assay. Next, we de-
termined the minimum concentration needed to
prevent biofilm formation. Individual D-amino
acids varied in their activity, with D-tyrosine
being more effective (3 mM) than D-methionine
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(2 mM), D-tryptophan (5 mM), or D-leucine
(8.5 mM). A mixture of all four D-amino acids
was particularly potent, with a minimum inhib-
itory concentration of ~10 nM. Thus, D-amino
acids can act synergistically. Not only did the D-
amino acids prevent biofilm formation, but they
also disrupted existing biofilms. The addition of
D-tyrosine or a mixture of the four D-amino acids
(but not the corresponding L-amino acids) caused
pellicle breakdown (Fig. 2A).

D-Amino acids are generated by racemases
(11). Genetic evidence consistent with the idea
that the biofilm-inhibiting factor is D-amino acids
came from mutants of ylmE and racX, genes
whose predicted products exhibit sequence sim-
ilarity to known racemases. Strains mutant for
ylmE or racX alone showed a modest delay in
pellicle disassembly (fig. S4). However, pellicles
formed by cells doubly mutant for the putative
racemases were substantially delayed in disas-
sembly (fig. S4). Conversely, cells engineered to
overexpress ylmE were blocked in biofilm forma-
tion (fig. S5). Also, conditioned medium from
the double mutant was ineffective at inhibiting
biofilm formation, in contrast to conditioned me-
dium from the wild type (Fig. 2B). Next, we asked
whether D-amino acids are produced in sufficient

abundance to account for disassembly of ma-
ture biofilms. Accordingly, we carried out liquid
chromatography–mass spectrometry, followed by
the identification of the D-amino acids using deriv-
atization with Na-(2,4-dinitro-5-fluorophenyl)-L-
alaninamide (L-FDAA) on conditioned medium
collected at early and late times after pellicle for-
mation. D-tyrosine (6 mM), D-leucine (23 mM), and
D-methionine (5 mM) were present at concentra-
tions at or above those needed to inhibit biofilm
formation by day 6, but only at concentrations
of <10 nM at day 3. In contrast, the ylmE racX
double mutant was blocked in D-tyrosine pro-
duction and impaired in D-leucine production at
day 6 (table S1).

How do D-amino acids disassemble biofilms?
D-amino acids did not inhibit growth (fig. S6),
nor did they inhibit the expression of the matrix
operons epsA-O and yqxM-sipW-tasA (fig. S7).
D-amino acids are incorporated into the peptide
side chains of peptidoglycan in place of the
terminal D-alanine (10). Using 14C– D-tyrosine,
we confirmed that D-tyrosine (but not 14C–L-
proline) was incorporated into the cell wall
(fig. S8), with incorporation beginning at day 3
(fig. S9). Finally, in keeping with the idea that
D-amino acids act via their incorporation into

the wall, the effects of D-tyrosine and other
D-amino acids were prevented by D-alanine
(Fig. 1, K and L, and fig. S2).

We hypothesized that TasA fibers are
anchored to the cell wall and that the incorpora-
tion of biofilm-disassembling D-amino acids into
the cell wall might disengage the fibers from their
anchor. To investigate this possibility, we ex-
amined the localization of a functional fusion
of TasAwith the fluorescent reporter mCherry.
Treatment with D-tyrosine had little effect on
the accumulation of TasA-mCherry (fig. S10). In
contrast, when the cells were washed by cen-
trifugation, re-suspended, and then examined
by fluorescence microscopy, untreated cells,
which were often in clumps, were intensely dec-
orated with TasA-mCherry (Fig. 3A). In contrast,
D-tyrosine–treated cells, which were largely un-
clumped, showed only low levels of fluorescence
(17-fold lower; table S2). Similar results were
obtained with D-leucine and with the D-amino
acid mixture. We also carried out electron mi-
croscopy (EM) with gold-labeled antibodies to
TasA (anti-TasA) to visualize unmodified TasA.
TasA fibers were anchored to the cells of un-
treated pellicles (Fig. 3B, images 1 and 2). In
contrast, cells treated with D-tyrosine consisted of

Fig. 1. Conditioned medium blocks pellicle formation. B. subtilis strain NCIB3610 was grown at 22°C in 12-
well plates in a liquid biofilm-inducing medium for 3 days (A) or 8 days (B). (C andD) Cells grown for 3 days
in a medium with added dried and resuspended methanol eluate (1:100 v/v) from a C18 column (Sep Pak)
that had been loaded with conditioned (cond.) medium from a 6- to 8-day-old culture (C) or a 3-day-old
culture (D). The final concentration of concentrated factor added to the wells represented a 1:4 dilution on a
volume basis of the original conditioned medium. (E) The factor was further purified on the C18 column by
stepwise elution with methanol. The result of adding 3 ml of the 40% methanol eluate is shown. (F) Before
addition to fresh medium, the 40% methanol eluate was incubated with proteinase K beads. (G to L) Wells
containing MSgg medium supplemented with D-tyrosine (3 mM), D-leucine (8.5 mM), L-tyrosine (7 mM),
L-leucine (8.5mM), D-tyrosine (3 mM), and D-alanine (10mM) or with D-leucine (8.5mM) and D-alanine (10mM)
were inoculated with strain NCIB3610 and incubated for 3 days. The diameter of all wells was 22.1 mm.

Fig. 2. D-amino acids break down pellicles, and in-
hibition of pellicle formation by conditioned medium
depends on racemase genes . (A) Three-day-old cul-
tures with added (as a 10 ml drop to the surface of
the pellicles to achieve the indicated final con-
centration) L-tyrosine (7 mM), a mixture of L-amino
acids (5 mM each), D-tyrosine (3 mM), or a mixture
of D-amino acids (2.5 nM each). (B) Effect of con-
centrated C18 column (Sep Pak) eluate from a con-
ditioned medium from an 8-day-old culture from
the wild type or from a strain (IKG55) doubly
mutant for ylmE and racX. Scale bars, 7 mm.
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a mixture of cells that were largely undecorated
with TasA fibers and free TasA fibers or ag-
gregates of fibers that were not anchored to cells
(Fig. 3B, images 3 to 6).

Next, we isolated D-amino acid–resistant
mutants (Fig. 4A). Wrinkled papillae appeared
spontaneously on the flat colonies formed during
growth on a solid medium containing D-tyrosine
(Fig. 4A) or D-leucine (fig. S2). When purified,
these spontaneous mutants gave rise to wrinkled

colonies and pellicles in the presence of individ-
ual D-amino acids. We isolated several such mu-
tants and found that they contained mutations in
the 3′ region of yqxM (table S3). Two mutations
that conferred resistance to D-tyrosine were exam-
ined in detail: (i) yqxM2was an insertion of G:C at
base pair 728 and (ii) yqxM6 was a deletion of
A:T at base pair 569 (Fig. 4B). The presence of
yqxM2 and yqxM6 restored clumping and cell
decoration by TasA-mCherry to cells treated with

D-tyrosine (Fig. 3A and fig. S12; see above text).
Because YqxM is required for the association
of TasA with cells (6), the discovery that the
biofilm-inhibiting effect of D-amino acids could
be overcome by mutants of YqxM reinforces the
view that the effect of D-amino acid incorporation
into the cell wall is to impair the anchoring of the
TasA fibers to the cell. A domain near the C ter-
minus of YqxM could trigger the release of TasA
in response to the presence of D-amino acids in the
cell wall.

Finally, we wondered whether D-amino acids
would inhibit biofilm formation by other bacte-
ria. The pathogens Staphylococcus aureus and
Pseudomonas aeruginosa form biofilms on
plastic surfaces (12), which can be detected by
washing away unbound cells and staining the
bound cells with crystal violet. D-tyrosine and
the D-amino acid mixture were effective in pre-
venting biofilm formation (fig. S13), whereas
L-tyrosine and L-amino acids had no effect. Fur-
thermore, the effect of D-amino acids was pre-
vented by the presence of D-alanine (fig. S13),
suggesting that D-amino acids acted to block
biofilm formation by replacement of D-alanine in
the peptide side chain. Given that many bacteria
produce D-amino acids, these amino acids may
provide a general strategy for biofilm disassem-
bly. If so, then D-amino acids might prove widely
useful in medical and industrial applications for
the prevention or eradication of biofilms.
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Fig. 3. D-tyrosine causes the release of TasA fibers. (A) Cell association of TasA-mCherry by fluorescence
microscopy. Wild-type cells and yqxM6 (IKG51) mutant cells containing the tasA-mCherry fusion were
grown to stationary phase (optical density at 600 nm = 1.5) with shaking in a biofilm-inducing medium in
the presence (+D-Tyr) or absence (untreated) of D-tyrosine (6 mM), as indicated. The cells were then washed
in phosphate-buffered saline and visualized by fluorescence microscopy. Scale bars, 4 mm. (B) Cell
association of TasA fibers by EM. 24-hour-old cultures were incubated without (images 1 and 2) or with
(images 3 to 6) D-tyrosine (0.1 mM) for an additional 12 hours. TasA fibers were stained by immunogold
labeling with anti-TasA antibodies and visualized by transmission electron microscopy. Solid black arrows
indicate fiber bundles; open arrows indicate individual fibers. Scale bars in the enlargements of images 2
and 4 and in image 6, 100 nm; all other scale bars, 500 nm. Images 1 and 2 show fiber bundles attached
to cells; images 3, 4, and 6 show individual fibers and bundles detached from cells; and images 3 to 5
show cells with little or no fiber material. For further details, see the supporting online material (9).

Fig. 4. Biofilm formation by YqxM mu-
tants resistant to D-tyrosine. (A) Wild-type
or yqxM6 (IKG51) mutant cells grown on
a solid (images 1 to 3) or liquid (images
4 to 6) biofilm-inducing medium. Cells
were grown in the absence (1 and 4) or
presence (2, 3, 5, and 6) of D-tyrosine
(3 mM). Arrows in image 2 indicate papil-
lae of spontaneous resistances mutants.
Scale bars, 3 mm. (B) C-terminal amino
acid sequences for wild-type YqxM and
the indicated frame-shift mutants (altered
sequences in blue).
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